If it's not what You are looking for type in the equation solver your own equation and let us solve it.
h^2=343
We move all terms to the left:
h^2-(343)=0
a = 1; b = 0; c = -343;
Δ = b2-4ac
Δ = 02-4·1·(-343)
Δ = 1372
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1372}=\sqrt{196*7}=\sqrt{196}*\sqrt{7}=14\sqrt{7}$$h_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14\sqrt{7}}{2*1}=\frac{0-14\sqrt{7}}{2} =-\frac{14\sqrt{7}}{2} =-7\sqrt{7} $$h_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14\sqrt{7}}{2*1}=\frac{0+14\sqrt{7}}{2} =\frac{14\sqrt{7}}{2} =7\sqrt{7} $
| -18=2(x+6)-10 | | 15+26x+8x2=0 | | x+x-3+2x=15 | | 2-5(4x-2)=50 | | 13=9/r+8 | | -16-5r=-3(8r+7) | | 3d-9+6=-16 | | 9*19^x=7*2^x | | 10=8x-496 | | 3/5x-2/3=1/2x+3/4 | | x/8=45 | | 3x+6=9x-3/9 | | -12t=-144 | | -9+-3x+4x-24=-4 | | 2x2+9x-5=0 | | -x*0,94=0 | | -2(z+3)=4z-3 | | 47+x=447 | | 4x²+8x+4=10x²-5x-1 | | x2+6x+9=0 | | -5x+8+2x=15 | | 4x+5=x26 | | 2605.29*(1.02233)^(x)=3500 | | 3/7x+9/7=9/5 | | 4-|3x+6|=24 | | 10t^2+19t=0 | | 1/6=3/4+y | | 3x2+10x=-8 | | 4a+2+a=3(a−2) | | 14(d+1)=14 | | 3√x^2-1=2 | | ^3√x^2-1=2 |